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Abstract

This seminar paper focusses on convolutional neural networks and a visualization technique allowing
further insights into their internal operation. After giving a brief introduction to neural networks and the
multilayer perceptron, we review both supervised and unsupervised training of neural networks in detail.
In addition, we discuss several approaches to regularization.

The second section introduces the different types of layers present in recent convolutional neural net-
works. Based on these basic building blocks, we discuss the architecture of the traditional convolutional
neural network as proposed by LeCun et al. [LBD+89] as well as the architecture of recent implementa-
tions.

The third section focusses on a technique to visualize feature activations of higher layers by backpro-
jecting them to the image plane. This allows to get deeper insights into the internal working of convolu-
tional neural networks such that recent architectures can be evaluated and improved even further.
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1 Motivation
Artificial neural networks are motivated by the learning capabilities of the human brain which consists
of neurons interconnected by synapses. In fact – at least theoretically – they are able to learn any given
mapping up to arbitrary accuracy [HSW89]. In addition, they allow to easily incorporate prior knowledge
about the task into the network architecture. As result, in 1989, LeCun et al. introduced convolutional
neural networks for application in computer vision [LBD+89].
Convolutional neural networks use images directly as input. Instead of handcrafted features, convolutional
neural networks are used to automatically learn a hierarchy of features which can then be used for classi-
fication purposes. This is accomplished by successively convolving the input image with learned filters to
build up a hierarchy of feature maps. The hierarchical approach allows to learn more complex, as well as
translation and distortion invariant, features in higher layers.
In contrast to traditional multilayer perceptrons, where deep learning is considered difficult [Ben09], deep
convolutional neural networks can be trained more easily using traditional methods1. This property is due to
the constrained architecture2 of convolutional neural networks which is specific to input for which discrete
convolution is defined, such as images. Nevertheless, deep learning of convolutional neural networks is an
active area of research, as well.
As with multilayer perceptrons, convolutional neural networks still have some disadvantages when com-
pared to other popular machine learning techniques as for example Support Vector Machines as their internal
operation is not well understood [ZF13]. Using deconvolutional neural networks proposed in [ZKTF10],
this problem is addressed in [ZF13]. The approach described in [ZF13] allows the visualization of feature
activations in higher layers of the network and can be used to give further insights into the internal operation
of convolutional neural networks.

1.1 Bibliographical Notes
Although this paper briefly introduces the basic notions of neural networks as well as network training, this
topic is far too extensive to be covered in detail. For a detailed discussion of neural networks and their
training several textbooks are available [Bis95, Bis06, Hay05].
The convolutional neural network was originally proposed in [LBD+89] for the task of ZIP code recog-
nition. Both convolutional neural networks as well as traditional multilayer perceptrons were excessively
applied to character recognition and handwritten digit recognition [LBBH98]. Training was initially based
on error backpropagation [RHW86] and gradient descent.
The original convolutional neural network is based on weight sharing which was proposed in [RHW86].
An extension of weight sharing called soft weight sharing is discussed in [NH92]. Recent implementations
make use of other regularization techniques as for example dropout [HSK+12].
Although the work by Hinton et al. in 2006 [HO06] can be considered as breakthrough in deep learning –
as it allows unsupervised training of neural networks – deep learning is still considered difficult [Ben09].
A thorough discussion of deep learning including recent research is given in [Ben09] as well as [LBLL09,
GB10, BL07]. Additional research on this topic includes discussion on activation functions as well as the
effect of unsupervised pre-training [EMB+09, EBC+10, GBB11].
Recent architectural changes of convolutional neural networks are discussed in detail in [JKRL09] and
[LKF10]. Recent success of convolutional neural networks is reported in [KSH12] and [CMS12].
This paper is mainly motivated by the experiments in [ZF13]. Based on deconvolutional neural networks
[ZKTF10], the authors of [ZF13] propose a visualization technique allowing to visualize feature activations
of higher layers.

1Here, traditional methods refers to gradient descent for parameter optimization combined with error backpropagation as discussed
in section 2.3.

2Using weight sharing as discussed in section 2.5.4, the actual model complexity is reduced.
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Figure 1: A processing unit consists of a propagation rule map-
ping all inputs w0,x1 . . . ,xD to the actual input z, and an activation
function f which is applied on the actual input to form the output
y = f (z). Here, w0 represents an external input called bias and
x1, . . . ,xD are inputs from other units of the network. In a network
graph, each unit is labeled according to its output. Therefore, to in-
clude the bias w0 as well, a dummy unit (see section 2.1) with value
1 is included.

2 Neural Networks and Deep Learning
An (artificial) neural network comprises a set of interconnected processing units [Bis95, p. 80-81]. Given
input values w0,x1, . . . ,xD, where w0 represents an external input and x1, . . . ,xD are inputs originating from
other processing units within the network, a processing unit computes its output as y = f (z). Here, f is
called activation function and z is obtained by applying a propagation rule which maps all the inputs to the
actual input z. This model of a single processing unit includes the definition of a neuron in [Hay05] where
instead of a propagation rule an adder is used to compute z as the weighted sum of all inputs.
Neural networks can be visualized in the means of a directed graph3 called network graph [Bis95, p. 117-
120]. Each unit is represented by a node labeled according to its output and the units are interconnected by
directed edges. For a single processing unit this is illustrated in figure 1 where the external input w0 is only
added for illustration purposes and is usually omitted [Bis95, p. 116-120].
For convenience, we distinguish input units and output units. An input unit computes the output y := x
where x is the single input value of the unit. Output units may accept an arbitrary number of input values.
Altogether, the network represents a function y(x) which dimensions are fixed by the number of input units
and output units, this means the input of the network is accepted by the input units and the output units form
the output of the network.

2.1 Multilayer Perceptrons
A (L+ 1)-layer perceptron, illustrated in figure 2, consists of D input units, C output units, and several so
called hidden units. The units are arranged in layers, that is a multilayer perceptron comprises an input
layer, an output layer and L hidden layers4 [Bis95, p. 117-120]. The ith unit within layer l computes the
output

y(l)i = f
(

z(l)i

)
with z(l)i =

m(l−1)

∑
k=1

w(l)
i,k y(l−1)

k +w(l)
i,0 (1)

where w(l)
i,k denotes the weighted connection from the kth unit in layer (l− 1) to the ith unit in layer l, and

w(l)
i,0 can be regarded es external input to the unit and is referred to as bias. Here, m(l) denotes the number

of units in layer l, such that D = m(0) and C = m(L+1). For simplicity, the bias can be regarded as weight
when introducing a dummy unit y(l)0 := 1 in each layer:

z(l)i =
m(l−1)

∑
k=0

w(l)
i,k y(l−1)

k or z(l) = w(l)y(l−1) (2)

where z(l), w(l) and y(l−1) denote the corresponding vector and matrix representations of the actual inputs
z(l)i , the weights w(l)

i,k and the outputs y(l−1)
k , respectively.

3In its most general form, a directed graph is an ordered pair G = (V,E) where V is a set of nodes and E a set of edges connecting
the nodes: (u,v) ∈ E means that a directed edge from node u to v exists within the graph. In a network graph, given two units u and v,
a directed edge from u to v means that the output of unit u is used by unit v as input.

4Actually, a (L+1)-layer perceptron consists of (L+2) layers including the input layer. However, as stated in [Bis06], the input
layer is not counted as there is no real processing taking place (input units compute the identity).
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Figure 2: Network graph of a (L+1)-layer perceptron with D input units and C output units. The lth hidden
layer contains m(l) hidden units.

Overall, a multilayer perceptron represents a function

y(·,w) : RD→ RC,x 7→ y(x,w) (3)

where the output vector y(x,w) comprises the output values yi(x,w) := y(L+1)
i and w is the vector of all

weights within the network.
We speak of deep neural networks when there are more than three hidden layers present [Ben09]. The
training of deep neural networks, referred to as deep learning, is considered especially challenging [Ben09].

2.2 Activation Functions
In [Hay05, p. 34-37], three types of activation functions are discussed: threshold functions, piecewise-linear
functions and sigmoid functions. A common threshold function is given by the Heaviside function:

h(z) =

{
1 if z≥ 0
0 if z < 0

. (4)

However, both threshold functions as well as piecewise-linear functions have some drawbacks. First, for
network training we may need the activation function to be differentiable. Second, nonlinear activation
functions are preferable due to the additional computational power they induce [DHS01, HSW89].
The most commonly used type of activation functions are sigmoid functions. As example, the logistic
sigmoid is given by

σ(z) =
1

1+ exp(−z)
. (5)

Its graph is s-shaped and it is differentiable as well as monotonic. The hyperbolic tangent tanh(z) can be
regarded as linear transformation of the logistic sigmoid onto the interval [−1,1]. Note, that both activation
functions are saturating [DHS01, p. 307-308].
When using neural networks for classification5, the softmax activation function for output units is used to
interpret the output values as posterior probabilities6. Then the output of the ith unit in the output layer is

5The classification task can be stated as follows: Given an input vector x of D dimensions, the goal is to assign x to one of C
discrete classes [Bis06].

6The outputs y(L+1)
i , 1≤ i≤C, can be interpreted as probabilities as they lie in the interval [0,1] and sum to 1 [Bis06].
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Figure 3: Common used activation functions include the logistic sigmoid σ(z) defined in equation (5) and
the hyperbolic tangent tanh(z). More recently used activation functions are the softsign of equation (7) and
the rectified hyperbolic tangent.

given by

σ(z(L+1), i) =
exp(z(L+1)

i )

∑
C
k=1 exp(z(L+1)

k )
. (6)

Experiments in [GB10] show that the logistic sigmoid as well as the hyperbolic tangent perform rather
poorly in deep learning. Better performance is reported using the softsign activation function:

s(z) =
1

1+ |z|
. (7)

In [KSH12] a non-saturating activation function is used:

r(z) = max(0,z). (8)

Hidden units using the activation function in equation (8) are called rectified linear units7. Furthermore,
in [JKRL09], rectification in addition to the hyperbolic tangent activation function is reported to give good
results. Some of the above activation functions are shown in figure 3

2.3 Supervised Training
Supervised training is the problem of determining the network weights to approximate a specific target
mapping g. In practice, g may be unknown such that the mapping is given by a set of training data. The
training set

TS := {(xn, tn) : 1≤ n≤ N} (9)

comprises both input values xn and corresponding desired, possibly noisy, output values tn ≈ g(xn) [Hay05].

7Also abbreviated as ReLUs.
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2.3.1 Error Measures

Training is accomplished by adjusting the weights w of the neural network to minimize a chosen objective
function which can be interpreted as error measure between network output y(xn) and desired target output
tn. Popular choices for classification include the sum-of-squared error measure given by

E(w) =
N

∑
n=1

En(w) =
N

∑
n=1

C

∑
k=1

(yk(xn,w)− tn,k)2, (10)

and the cross-entropy error measure given by

E(w) =
N

∑
n=1

En(w) =
N

∑
n=1

C

∑
k=1

tn,k log(yk(xn,w)), (11)

where tn,k is the kth entry of the target value tn. Details on the choice of error measure and their properties
can be found in [Bis95].

2.3.2 Training Protocols

[DHS01] considers three training protocols:

Stochastic training An input value is chosen at random and the network weights are updated based on the
error En(w).

Batch training All input values are processed and the weights are updated based on the overall error
E(w) = ∑

N
n=1 En(w).

Online training Every input value is processed only once and the weights are updated using the er-
ror En(w).

Further discussion of these protocols can be found in [Bis06] and [DHS01]. A common practice (e.g. used
for experiments in [GBB11], [GB10]) combines stochastic training and batch training:

Mini-batch training A random subset M ⊆ {1, . . . ,N} (mini-batches) of the training set is processed and
the weights are updated based on the cumulative error EM(w) := ∑n∈M En(w).

2.3.3 Parameter Optimization

Considering stochastic training we seek to minimize En with respect to the network weights w. The neces-
sary criterion can be written as

∂En

∂w
= ∇En(w)

!
= 0 (12)

where ∇En is the gradient of the error En.
Due to the complexity of the error En, a closed-form solution is usually not possible and we use an iterative
approach. Let w[t] denote the weight vector in the t th iteration. In each iteration we compute a weight
update ∆w[t] and update the weights accordingly [Bis06, p. 236-237]:

w[t +1] = w[t]+∆w[t]. (13)

From unconstrained optimization we have several optimization techniques available. Gradient descent is a
first-order method, this means it uses only information of the first derivative of En and can, thus, be used
in combination with error backpropagation as described in section 2.3.5, whereas Newton’s method is a
second-order method and needs to evaluate the Hessian matrix Hn of En

8 (or an appropriate approximation
of the Hessian matrix) in each iteration step.

8The Hessian matrix Hn of a the error En is the matrix of second-order partial derivatives: (Hn)r,s =
∂2En

∂wr∂ws
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Figure 4: Illustrated using a quadratic function
to minimize, the idea of gradient descent is to
follow the negative gradient at the current posi-
tion as it describes the direction of the steepest
descent. The learning rate γ describes the step
size taken in each iteration step. Therefore, gra-
dient descent describes a first-order optimiza-
tion technique.

Gradient descent Gradient descent is motivated by the idea to take a step in the direction of the steepest
descent, that is the direction of the negative gradient, to reach a minimum [Bis95, p. 263-267]. This
principle is illustrated by figure 4. Therefore, the weight update is given by

∆w[t] =−γ
∂En

∂w[t]
=−γ∇En(w[t]) (14)

where γ is the learning rate. As discussed in [Bis06, p.263-272], this approach has several difficulties,
for example how to choose the learning rate to get fast learning but at the same time avoid oscillation9.

Newton’s method Although there are some extensions of gradient descent available, second-order meth-
ods promise faster convergence because of the use of second-order information [BL89]. When using
Newton’s method, the weight update ∆w[t] is given by

∆w[t] =−γ

(
∂2En

∂w[t]2

)−1
∂En

∂w[t]
=−γ

(
Hn(w[t])

)−1
∇En(w[t]) (15)

where Hn(w[t]) is the Hessian matrix of En and γ describes the learning rate. The drawback of this
method is the evaluation and inversion of the Hessian matrix10 which is computationally expen-
sive [BL89].

2.3.4 Weight Initialization

As we use an iterative optimization technique, the initialization of the weights w is crucial. [DHS01, p. 311-
312] suggest choosing the weights randomly in the range

− 1√
m(l−1)

< w(l)
i, j <

1√
m(l−1)

. (16)

This result is based on the assumption that the inputs of each unit are distributed according to a Gaus-
sian distribution and ensures that the actual input is approximately of unity order. Given logistic sigmoid
activation functions, this is meant to result in optimal learning [DHS01, p. 311-312].
In [GB10] an alternative initialization scheme called normalized initialization is introduced. We choose the
weights randomly in the range

−
√

6√
m(l−1)+m(l)

< w(l)
i, j <

√
6√

m(l−1)+m(l)
. (17)

The derivation of this initialization scheme can be found in [GB10]. Experimental results in [GB10] demon-
strate improved learning when using normalized initialization.
An alternative to these weight initialization schemes is given by layer-wise unsupervised pre-training as
discussed in [EBC+10]. We discuss unsupervised training in section 2.4.

9Oscillation occurs if the learning rate is chosen too large such that the algorithm successively oversteps the minimum.
10An algorithm to evaluate the Hessian matrix based on error backpropagation as introduced in section 2.3.5 can be found in [Bis92].

The inversion of an n×n matrix has complexity O(n3) when using the LU decomposition or similar techniques.
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2.3.5 Error Backpropagation

Algorithm 2.1, proposed in [RHW86], is used to evaluate the gradient ∇En(w[t]) of the error function En in
each iteration step. More details as well as a thorough derivation of the algorithm can be found in [Bis95]
or [RHW86].

Algorithm 2.1 (Error Backpropagation)
1. Propagate the input value xn through the network to get the actual input and output of each unit.

2. Calculate the so called errors δ
(L+1)
i [Bis06, p. 241-245] for the output units:

δ
(L+1)
i :=

∂En

∂y(L+1)
i

f ′(z(L+1)
i ). (18)

3. Determine δ
(l)
i for all hidden layers l by using error backpropagation:

δ
(l)
i := f ′(z(l)i )

m(l+1)

∑
k=1

w(l+1)
i,k δ

(l+1)
k . (19)

4. Calculate the required derivatives:

∂En

∂w(l)
j,i

= δ
(l)
j y(l−1)

i . (20)

2.4 Unsupervised Training
In unsupervised training, given a training set

TU := {xn : 1≤ n≤ N} (21)

without desired target values, the network has to find similarities and regularities within the data by itself.
Among others, unsupervised training of deep architectures can be accomplished based on Restricted Boltz-
man Machines11 or auto-encodes [Ben09]. We focus on auto-encoders.

2.4.1 Auto-Encoders

Auto-encoders, also called auto-associators [Ben09], are two-layer perceptrons with the goal to compute
a representation of the input in the first layer from which the input can accurately be reconstructed in the
output layer. Therefore, no desired target values are needed – auto-encoders are self-supervised [Ben09].
In the hidden layer, consisting of m := m(1) units, an auto-encoder computes a representation c(x) from the
input x [Ben09]:

ci(x) =
D

∑
k=0

w(1)
i,k xk. (22)

The output layer tries to reconstruct the input from the representation given by c(x):

x̂i = di(c(x)) =
m

∑
k=0

w(2)
i,k ck(x). (23)

As the output of an auto-encoder should resemble its input, it can be trained as discussed in section 2.3 by
replacing the desired target values tn used in the error measure by the input xn. In the case where m < D,
the auto-encoder is expected to compute a useful, dimensionality-reducing representation of the input. If
m ≥ D, the auto-encoder could just learn the identity such that x̂ would be a perfect reconstruction of x.
However, as discussed in [Ben09], in practice this is not a problem.

11A brief introduction to Restricted Boltzman Machines can be found in [Ben09].
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Figure 5: An auto-encoder is mainly a tow-
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and the goal to compute a representation
c(x) in the first layer from which the input
can accurately be reconstructed in the output
layer.

2.4.2 Layer-Wise Training

As discussed in [LBLL09], the layers of a neural network can be trained in an unsupervised fashion using
the following scheme:

1. For each layer l = 1, . . . ,L+1:

– Train layer l using the approach discussed above taking the output of layer (l−1) as input, associating
the output of layer l with the representation c(y(l−1)) and adding an additional layer to compute ŷ(l).

2.5 Regularization
It has been shown, that multilayer perceptrons with at least one hidden layer can approximate any target
mapping up to arbitrary accuracy [HSW89]. Thus, the training data may be overfitted, that is the training
error may be very low on the training set but high on unseen data [Ben09]. Regularization describes the task
to avoid overfitting to give better generalization performance, meaning that the trained network should also
perform well on unseen data [Hay05]. Therefore, the training set is usually split up into an actual training
set and a validation set. The neural network is then trained using the new training set and its generalization
performance is evaluated on the validation set [DHS01].
There are different methods to perform regularization. Often, the training set is augmented to introduce
certain invariances the network is expected to learn [KSH12]. Other methods add a regularization term to
the error measure aiming to control the complexity and form of the solution [Bis95]:

Ên(w) = En(w)+ηP(w) (24)

where P(w) influences the form of the solution and η is a balancing parameter.

2.5.1 Lp-Regularization

A popular example of Lp-regularization is the L2-regularization12:

P(w) = ‖w‖2
2 = wT w. (25)

The idea is to penalize large weights as they tend to result in overfitting [Bis95]. In general, arbitrary p can
be used to perform Lp-regularization. Another example sets p = 113 to enforce sparsity of the weights, that
is many of the weights should vanish:

P(w) = ‖w‖1. (26)

12The L2-regularization is often referred to as weight decay, see [Bis95] for details.
13For p = 1, the norm ‖ · ‖1 is defined by ‖w‖1 = ∑

W
k=1 |wk| where W is the dimension of the weight vector w.
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2.5.2 Early Stopping

While the error on the training set tends to decrease with the number of iterations, the error on the validation
set usually starts to rise again once the network starts to overfit the training set. To avoid overfitting, training
can be stopped as soon as the error on the validation set reaches a minimum, that is before the error on the
validation set rises again [Bis95]. This method is called early stopping.

2.5.3 Dropout

In [HSK+12] another regularization technique, based on observation of the human brain, is proposed.
Whenever the neural network is given a training sample, each hidden unit is skipped with probability 1

2 .
This method can be interpreted in different ways [HSK+12]. First, units cannot rely on the presence of
other units. Second, this method leads to the training of multiple different networks simultaneously. Thus,
dropout can be interpreted as model averaging14.

2.5.4 Weight Sharing

The idea of weight sharing was introduced in [RHW86] in the context of the T-C problem15. Weight
sharing describes the idea of different units within the same layer to use identical weights. This can be
interpreted as a regularization method as the complexity of the network is reduced and prior knowledge
may be incorporated into the network architecture. The equality constraint is replaced when using soft
weight sharing, introduced in [NH92]. Here, a set of weights is encouraged not to have the same weight
value but similar weight values. Details can be found in [NH92] and [Bis95].
When using weight sharing, error backpropagation can be applied as usual, however, equation (20) changes
to

∂En

∂w(l)
j,i

=
m(l)

∑
k=1

δ
(l)
k y(l−1)

i (27)

when assuming that all units in layer l share the same set of weights, that is w(l)
j,i = w(l)

k,i for 1≤ j,k ≤ m(l).
Nevertheless, equation (20) still needs to be applied in the case that the errors need to be propagated to
preceding layers [Bis06].

2.5.5 Unsupervised Pre-Training

Results in [EBC+10] suggest that layer-wise unsupervised pre-training of deep neural networks can be
interpreted as regularization technique16. Layer-wise unsupervised pre training can be accomplished using
a similar scheme as discussed in section 2.4.2:

1. For each l = 1, . . . ,L+1:

– Train layer l using the approach discussed in section 2.4.1.

2. Fine-tune the weights using supervised training as discussed in section 2.3.

A formulation of the effect of unsupervised pre-training as regularization method is proposed in [EMB+09]:
The regularization term punishes weights outside a specific region in weight space with an infinite penalty
such that

P(w) =− log(p(w)) (28)

where p(w) is the prior for the weights, which is zero for weights outside this specific region [EBC+10].

14Model averaging tries to reduce the error by averaging the prediction of different models [HSK+12].
15The T-C problem describes the task of classifying images into those containing a “T” and those containing a “C” independent of

position and rotation [RHW86].
16Another interpretation of unsupervised pre-training is that it initializes the weights in the basin of a good local minimum and can

therefore be interpreted as optimization aid [Ben09].
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3 Convolutional Neural Networks
Although neural networks can be applied to computer vision tasks, to get good generalization performance,
it is beneficial to incorporate prior knowledge into the network architecture [LeC89]. Convolutional neural
networks aim to use spatial information between the pixels of an image. Therefore, they are based on dis-
crete convolution. After introducing discrete convolution, we discuss the basic components of convolutional
neural networks as described in [JKRL09] and [LKF10].

3.1 Convolution
For simplicity we assume a grayscale image to be defined by a function

I : {1, . . . ,n1}×{1, . . . ,n2}→W ⊆ R,(i, j) 7→ Ii, j (29)

such that the image I can be represented by an array of size n1× n2
17. Given the filter K ∈ R2h1+1×2h2+1,

the discrete convolution of the image I with filter K is given by

(I ∗K)r,s :=
h1

∑
u=−h1

h2

∑
v=−h2

Ku,vIr+u,s+v (30)

where the filter K is given by

K =


K−h1,−h2 . . . K−h1,h2

... K0,0
...

Kh1,−h2 . . . Kh1,h2

 . (31)

Note that the behavior of this operation towards the borders of the image needs to be defined properly18.
A commonly used filter for smoothing is the discrete Gaussian filter KG(σ) [FP02] which is defined by(

KG(σ)

)
r,s
=

1√
2πσ2

exp

(
r2 + s2

2σ2

)
(32)

where σ is the standard deviation of the Gaussian distribution [FP02].

3.2 Layers
We follow [JKRL09] and introduce the different types of layers used in convolutional neural networks.
Based on these layers, complex architectures as used for classification in [CMS12] and [KSH12] can be
built by stacking multiple layers.

3.2.1 Convolutional Layer

Let layer l be a convolutional layer. Then, the input of layer l comprises m(l−1)
1 feature maps from the

previous layer, each of size m(l−1)
2 ×m(l−1)

3 . In the case where l = 1, the input is a single image I consisting
of one or more channels. This way, a convolutional neural network directly accepts raw images as input.
The output of layer l consists of m(l)

1 feature maps of size m(l)
2 ×m(l)

3 . The ith feature map in layer l, denoted

Y (l)
i , is computed as

Y (l)
i = B(l)

i +
m(l−1)

1

∑
j=1

K(l)
i, j ∗Y (l−1)

j (33)

17Often, W will be the set {0, . . . ,255} representing an 8-bit channel. Then, a color image can be represented by an array of size
n1×n2×3 assuming three color channels, for example RGB.

18As example, consider a gray scale image of size n1×n2. When applying an arbitrary filter of size 2h1 +1×2h2 +1 to the pixel at
location (1,1) the sum of equation (30) includes pixel locations with negative indices. To solve this problem, several approaches can
be considered, as for example padding the image in some way or applying the filter only for locations where the operation is defined
properly resulting in the output array being smaller than the image.
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Figure 6: Illustration of a single convolutional
layer. If layer l is a convolutional layer, the input
image (if l = 1) or a feature map of the previous
layer is convolved by different filters to yield the
output feature maps of layer l.

input image
or input feature map output feature maps

where B(l)
i is a bias matrix and K(l)

i, j is the filter of size 2h(l)1 +1×2h(l)2 +1 connecting the jth feature map in

layer (l−1) with the ith feature map in layer l [LKF10]19. As mentioned above, m(l)
2 and m(l)

3 are influenced
by border effects. When applying the discrete convolution only in the so called valid region of the input
feature maps, that is only for pixels where the sum of equation (30) is defined properly, the output feature
maps have size

m(l)
2 = m(l−1)

2 −2h(l)1 and m(l)
3 = m(l−1)

3 −2h(l)2 . (34)

Often the filters used for computing a fixed feature map Y (l)
i are the same, that is K(l)

i, j = K(l)
i,k for j 6= k. In

addition, the sum in equation (33) may also run over a subset of the input feature maps.
To relate the convolutional layer and its operation as defined by equation (33) to the multilayer perceptron,
we rewrite the above equation. Each feature map Y (l)

i in layer l consists of m(l)
2 ·m

(l)
3 units arranged in a

two-dimensional array. The unit at position (r,s) computes the output

(
Y (l)

i

)
r,s
=
(

B(l)
i

)
r,s
+

m(l−1)
1

∑
j=1

(
K(l)

i, j ∗Y (l−1)
j

)
r,s

(35)

=
(

B(l)
i

)
r,s
+

m(l−1)
1

∑
j=1

h(l)1

∑
u=−h(l)1

h(l)2

∑
v=−h(l)2

(
K(l)

i, j

)
u,v

(
Y (l−1)

j

)
r+u,s+v

. (36)

The trainable weights of the network can be found in the filters K(l)
i, j and the bias matrices B(l)

i .
As we will see in section 3.2.5, subsampling is used to decrease the effect of noise and distortions. As noted
in [CMM+11], subsampling can be done using so called skipping factors s(l)1 and s(l)2 . The basic idea is to
skip a fixed number of pixels, both in horizontal and in vertical direction, before applying the filter again.
With skipping factors as above, the size of the output feature maps is given by

m(l)
2 =

m(l−1)
2 −2h(l)1

s(l)1 +1
and m(l)

3 =
m(l−1)

3 −2h(l)2

s(l)2 +1
. (37)

3.2.2 Non-Linearity Layer

If layer l is a non-linearity layer, its input is given by m(l)
1 feature maps and its output comprises again

m(l)
1 = m(l−1)

1 feature maps, each of size m(l−1)
2 ×m(l−1)

3 such that m(l)
2 = m(l−1)

2 and m(l)
3 = m(l−1)

3 , given by

Y (l)
i = f

(
Y (l−1)

i

)
. (38)

19Note the difference between a feature map Y (l)
i comprising m(l)

2 ·m
(l)
3 units arranged in a two-dimensional array and a single unit

y(l)i as used in the multilayer perceptron.
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where f is the activation function used in layer l and operates point wise. In [JKRL09] additional gain
coefficients are added:

Y (l)
i = gi f

(
Y (l−1)

i

)
. (39)

A convolutional layer including a non-linearity, with hyperbolic tangent activation functions and gain coef-
ficients is denoted by FCSG

20. Note that in [JKRL09] this constitutes a single layer whereas we separate the
convolutional layer and the non-linearity layer.

3.2.3 Rectification

Let layer l be a rectification layer. Then its input comprises m(l−1)
1 feature maps of size m(l−1)

2 ×m(l−1)
3 and

the absolute value for each component of the feature maps is computed:

Y (l)
i =

∣∣∣Y (l)
i

∣∣∣ (40)

where the absolute value is computed point wise such that the output consists of m(l)
1 = m(l−1)

1 feature maps
unchanged in size21. Experiments in [JKRL09] show that rectification plays a central role in achieving good
performance.
Although rectification could be included in the non-linearity layer [LKF10], we follow [JKRL09] and add
this operation as an independent layer. The rectification layer is denoted by Rabs.

3.2.4 Local Contrast Normalization Layer

Let layer l be a contrast normalization layer. The task of a local contrast normalization layer is to enforce
local competitiveness between adjacent units within a feature map and units at the same spatial location
in different feature maps. We discuss subtractive normalization as well as brightness normalization. An
alternative, called divisive normalization, can be found in [JKRL09] or [LKF10]. Given m(l−1)

1 feature
maps of size m(l−1)

2 ×m(l−1)
3 , the output of layer l comprises m(l)

1 = m(l−1)
1 feature maps unchanged in size.

The subtractive normalization operation computes

Y (l)
i = Y (l−1)

i −
m(l−1)

∑
j=1

KG(σ) ∗Y (l−1)
j (41)

where KG(σ) is the Gaussian filter from equation (32).
In [KSH12] an alternative local normalization scheme called brightness normalization is proposed to be
used in combination with rectified linear units. Then the output of layer l is given by

(
Y (l)

i

)
r,s
=

(
Y (l−1)

i

)
r,s(

κ+µ∑
m(l−1)

1
j=1

(
Y (l−1)

j

)2

r,s

)µ (42)

where κ, λ, µ are hyperparameters which can be set using a validation set [KSH12]. The sum in equation
(42) may also run over a subset of to the feature maps in layer (l−1). Local contrast normalization layers
are denoted NS and NB, respectively.

3.2.5 Feature Pooling and Subsampling Layer

The motivation of subsampling the feature maps obtained by previous layers is robustness to noise and
distortions [JKRL09]. Reducing the resolution can be accomplished in different ways. In [JKRL09] and

20C for convolutional layer, S for sigmoid/hyperbolic tangent activation functions and G for gain coefficients. In [JKRL09] the filter
size is added as subscript such that F7×7

CSG denotes the usage of 7×7 filters. Additionally, the number of used filters is added as follows:

32F7×7
CSG . We omit the number of filters as we assume full connectivity such that the number of filters is given by m(l)

1 ·m
(l−1)
1 .

21Note that equation (40) can easily be applied to fully-connected layers as introduced in section 3.2.6, as well.
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Figure 7: Illustration of a pooling and subsam-
pling layer. If layer l is a pooling and sub-
sampling layer and given m(l−1)

1 = 4 feature
maps of the previous layer, all feature maps are
pooled and subsampled individually. Each unit
in one of the m(l)

1 = 4 output feature maps rep-
resents the average or the maximum within a
fixed window of the corresponding feature map
in layer (l−1).

feature maps
layer (l−1)

feature maps
layer l

[LKF10] this is combined with pooling and done in a separate layer, while in the traditional convolutional
neural networks, subsampling is done by applying skipping factors.
Let l be a pooling layer. Its output comprises m(l)

1 =m(l−1)
1 feature maps of reduced size. In general, pooling

operates by placing windows at non-overlapping positions in each feature map and keeping one value per
window such that the feature maps are subsampled. We distinguish two types of pooling:

Average pooling When using a boxcar filter22, the operation is called average pooling and the layer de-
noted by PA.

Max pooling For max pooling, the maximum value of each window is taken. The layer is denoted by PM.

As discussed in [SMB10], max pooling is used to get faster convergence during training. Both average
and max pooling can also be applied using overlapping windows of size 2p×2p which are placed q units
apart. Then the windows overlap if q < p. This is found to reduce the chance of overfitting the training set
[KSH12].

3.2.6 Fully Connected Layer

Let layer l be a fully connected layer. If layer (l− 1) is a fully connected layer, as well, we may apply
equation (2). Otherwise, layer l expects m(l−1)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 as input and the ith unit
in layer l computes:

y(l)i = f
(

z(l)i

)
with z(l)i =

m(l−1)
1

∑
j=1

m(l−1)
2

∑
r=1

m(l−1)
3

∑
s=1

w(l)
i, j,r,s

(
Y (l−1)

j

)
r,s
. (43)

where w(l)
i, j,r,s denotes the weight connecting the unit at position (r,s) in the jth feature map of layer (l−1)

and the ith unit in layer l. In practice, convolutional layers are used to learn a feature hierarchy and one or
more fully connected layers are used for classification purposes based on the computed features [LBD+89,
LKF10]. Note that a fully-connected layer already includes the non-linearities while for a convolutional
layer the non-linearities are separated in their own layer.

3.3 Architectures
We discuss both the traditional convolutional neural network as proposed in [LBD+89] as well as a modern
variant as used in [KSH12].

3.3.1 Traditional Convolutional Neural Network

In [JKRL09], the basic building block of traditional neural networks is FCSG – PA, while in [LBD+89], the
subsampling is accomplished within the convolutional layers and there are no gain coefficients used. In

22Using the notation as used in section 3.1, the boxcar filter KB of size 2h1 +1×2h2 +1 is given by (KB)r,s =
1

(2h1+1)(2h2+1) .
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input image
layer l = 0

convolutional layer
with non-linearities

layer l = 1

subsampling layer
layer l = 3

convolutional layer
with non-linearities

layer l = 4

subsampling layer
layer l = 6

fully connected layer
layer l = 7

fully connected layer
output layer l = 8

Figure 8: The architecture of the original convolutional neural network, as introduced in [LBD+89], al-
ternates between convolutional layers including hyperbolic tangent non-linearities and subsampling layers.
In this illustration, the convolutional layers already include non-linearities and, thus, a convolutional layer
actually represents two layers. The feature maps of the final subsampling layer are then fed into the actual
classifier consisting of an arbitrary number of fully connected layers. The output layer usually uses softmax
activation functions.

general, the unique characteristic of traditional convolutional neural networks lies in the hyperbolic tangent
non-linearities and the weight sharing [LBD+89]. This is illustrated in figure 8 where the non-linearities
are included within the convolutional layers.

3.3.2 Modern Convolutional Neural Networks

As example of a modern convolutional neural network we explore the architecture used in [KSH12] which
gives excellent performance on the ImageNet Dataset [ZF13]. The architecture comprises five convolutional
layers each followed by a rectified linear unit non-linearity layer, brightness normalization and overlapping
pooling. Classification is done using three additional fully-connected layers. To avoid overfitting, [KSH12]
uses dropout as regularization technique. Such a network can be specified by FCR – NB – P where FCR
denotes a convolutional layer followed by a non-linearity layer with rectified linear units. Details can be
found in [KSH12].
In [CMS12] the authors combine several deep convolutional neural networks which have a similar architec-
ture as described above and average their classification/prediction result. This architecture is referred to as
multi-column deep convolutional neural network.
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4 Understanding Convolutional Neural Networks
Although convolutional neural networks have been used with success for a variety of computer vision tasks,
their internal operation is not well understood. While backprojection of feature activations from the first
convolutional layer is possible, subsequent pooling and rectification layers hinder us from understanding
higher layers as well. As stated in [ZF13], this is highly unsatisfactory when aiming to improve convolu-
tional neural networks. Thus, in [ZF13], a visualization technique is proposed which allows us to visualize
the activations from higher layers. This technique is based on an additional model for unsupervised learning
of feature hierarchies: the deconvolutional neural network as introduced in [ZKTF10].

4.1 Deconvolutional Neural Networks
Similar to convolutional neural networks, deconvolutional neural networks are based upon the idea of gener-
ating feature hierarchies by convolving the input image by a set of filters at each layer [ZKTF10]. However,
deconvolutional neural networks are unsupervised by definition. In addition, deconvolutional neural net-
works are based on a top-down approach. This means, the goal is to reconstruct the network input from its
activations and filters [ZKTF10].

4.1.1 Deconvolutional Layer

Let layer l be a deconvolutional layer. The input is composed of m(l−1)
1 feature maps of size m(l−1)

2 ×m(l−1)
3 .

Each such feature map Y (l−1)
i is represented as sum over m(l)

1 feature maps convolved with filters K(l)
j,i :

m(l)
1

∑
j=1

K(l)
j,i ∗Y (l)

j = Y (l−1)
i . (44)

As with an auto-encoder, it is easy for the layer to learn the identity, if there are enough degrees of freedom.
Therefore, [ZKTF10] introduces a sparsity constraint for the feature maps Y (l)

j , and the error measure for
training layer l is given by

E(l)(w) =
m(l−1)

1

∑
i=1

∥∥∥∥∥∥∥
m(l)

1

∑
j=1

K(l)
j,i ∗Y (l)

j −Y (l−1)
i

∥∥∥∥∥∥∥
2

2

+
m(l)

1

∑
i=1

∥∥∥Y (l)
i

∥∥∥p

p
(45)

where ‖ · ‖p is the vectorized p-norm and can be interpreted as Lp-regularization as discussed in sec-
tion 2.5.1. The difference between a convolutional layer and a deconvolutional layer is illustrated in figure 9.
Note that the error measure E(l) is specific for layer l. This implies that a deconvolutional neural network
with multiple deconvolutional layers is trained layer-wise.

convolutional layer

bottom-up

deconvolutional layer

...

top-down

Figure 9: An illustration of the difference between the bottom-up approach of convolutional layers and the
top-down approach of deconvolutional layers.
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deconvolutional layer l = L

...

deconvolutional layer l = 1

feature activations

output layer l = L+1

convolutional layer l = L

...

convolutional layer l = 1

input image l = 0

Figure 10: After each convolutional layer, the feature activations of the previous layer are reconstructed
using an attached deconvolutional layer. For l > 1 the process of reconstruction is iterated until the feature
activations are backprojected onto the image plane.

4.1.2 Unsupervised Training

Similar to unsupervised training discussed in section 2.4, training is performed layer-wise. Therefore,
equation (45) is optimized by alternately optimizing with respect to the feature maps Y (l)

i given the filters
K(l)

j,i and the feature maps Y (l−1)
i of the previous layer and with respect to the filters K(l)

j,i [ZKTF10]. Here, the

optimization with respect to the feature maps Y (l)
i causes some problems. For example when using p = 1,

the optimization problem is poorly conditioned [ZKTF10] and therefore usual gradient descent optimization
fails. An alternative optimization scheme is discussed in detail in [ZKTF10], however, as we do not need to
train deconvolutional neural networks, this is left to the reader.

4.2 Visualizing Convolutional Neural Networks

To visualize and understand the internal operations of a convolutional neural network, a single deconvolu-
tional layer is attached to each convolutional layer. Given input feature maps for layer l, the output feature
maps Y (l)

i are fed back into the corresponding deconvolutional layer at level l. The deconvolutional layer
reconstructs the feature maps Y (l−1)

i that gave rise to the activations in layer l [ZF13]. This process is iter-
ated until layer l = 0 is reached resulting in the activations of layer l being backprojected onto the image
plane. The general idea is illustrated in figure 10. Note that the deconvolutional layers do not need to
be trained as the filters are already given by the trained convolutional layers and merely have to be trans-
posed23. More complex convolutional neural networks may include non-linearity layers, rectification layers
as well as pooling layers. While we assume the used non-linearities to be invertible , the use of rectification
layers and pooling layers cause some problems.

4.2.1 Pooling Layers

Let layer l be a max pooling layer, then the operation of layer l is not invertible. We need to remember
which positions within the input feature map Y (l)

i gave rise to the maximum value to get an approximate
inverse [ZF13]. Therefore, as discussed in [ZF13], switch variables are introduced.

23Given a feature map Y (l)
i = K(l)

i, j ∗Y (l−1)
j (here we omit the sum of equation (33) for simplicity) and using the transposed filter(

K(l)
j,i

)T
gives us: Y (l−1)

j =
(

K(l)
i, j

)T
∗Y (l)

i .
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unpooling layer

rectification layer

non-linearity layer

deconvolutional layer

pooling layer

rectification layer

non-linearity layer

convolutional layer

switch variables

Figure 11: While the approach described in section 4.2 can easily be applied to convolutional neural net-
works including non-linearity layers, the usage of pooling and rectification layers imposes some problems.
The max pooling operation is not invertible. Therefore, for each unit in the pooling layer, we remember the
position in the corresponding feature map which gave rise to the unit’s output value. To accomplish this, so
called switch variables are introduced [ZF13]. Rectification layers can simply be inverted by prepending a
rectification layer to the deconvolutional layer.

4.2.2 Rectification Layers

The convolutional layer may use rectification layers to obtain positive feature maps after each non-linearity
layer. To cope with this, a rectification layer is added to each deconvolutional layer to obtain positive re-
constructions of the feature maps, as well [ZF13]. Both the incorporation of pooling layers and rectification
layers is illustrated in figure 11.

4.3 Convolutional Neural Network Visualization
The above visualization technique can be used to discuss several aspects of convolutional neural networks.
We follow the discussion in [ZF13] which refers to the architecture described in section 3.3.2.

4.3.1 Filters and Features

Backprojecting the feature activations allows close analysis of the hierarchical nature of the features within
the convolutional neural network. Figure 12, taken from [ZF13], shows the activations for three layers with
corresponding input images. While the first and second layer comprise filters for edge and corner detection,
the filters tend to get more complex and abstract with higher layers. For example when considering layer
3, the feature activations reflect specific structures within the images: the patterns used in layer 3, row 1,
column 1; human contours in layer 3 row3, column 3. Higher levels show strong invariances to translation
and rotation [ZF13]. Such transformations usually have high impact on low-level features. In addition, as
stated in [ZF13], it is important to train the convolutional neural network until convergence as the higher
levels usually need more time to converge.

4.3.2 Architecture Evaluation

The visualization of the feature activations across the convolutional layers allows to evaluate the effect of
filter size as well as filter placement. For example, by analyzing the feature activations of the first and
second layer, the authors of [ZF13] observed that the first layer does only capture high frequency and low
frequency information and the feature activations of the second layer show aliasing artifacts. By adapting
the filter size of the first layer and the skipping factor used within the second layer, performance could be
improved. In addition, the visualization shows the advantage of deep architectures as higher layers are able
to learn more complex features invariant to low-level distortions and translations [ZF13].
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Figure 12: Taken from [ZF13], this figure shows a selection of features across several layers of a fully
trained convolutional network using the visualization technique discussed in section 4.

5 Conclusion
In the course of this paper we discussed the basic notions of both neural networks in general and the multi-
layer perceptron in particular. With deep learning in mind, we introduced supervised training using gradient
descent and error backropagation as well as unsupervised training using auto encoders. We concluded the
section with a brief discussion of regularization methods including dropout [HSK+12] and unsupervised
pre-training.
We introduced convolutional neural networks by discussing the different types of layers used in recent
implementations: the convolutional layer; the non-linearity layer; the rectification layer; the local contrast
normalization layer; and the pooling and subsampling layer. Based on these basic building blocks, we
discussed the traditional convolutional neural networks [LBD+89] as well as a modern variant as used
in [KSH12].
Despite of their excellent performance [KSH12, CMS12], the internal operation of convolutional neural
networks is not well understood [ZF13]. To get deeper insight into their internal working, we followed
[ZF13] and discussed a visualization technique allowing to backproject the feature activations of higher
layers. This allows to further evaluate and improve recent architectures as for example the architecture used
in [KSH12].
Nevertheless, convolutional neural networks and deep learning in general is an active area of research.
Although the difficulty of deep learning seems to be understood [Ben09, GB10, EMB+09], learning feature
hierarchies is considered very hard [Ben09]. Here, the possibility of unsupervised pre-training had a huge
impact and allows to train deep architectures in reasonable time [Ben09, EBC+10]. Nonetheless, the reason
for the good performance of deep neural networks is still not answered fully.
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